Graduate Student Lecture Series

Random Walks and Their Relation to the Stability of Phase-Locked Coupled Oscillators
Friday, 10 February 2017 - 4:00 pm to 4:30 pm
Location
Room number: 
B005
Registration
Registration required: 
No
Cost to attend: 
Free of charge
Event organizer: 
Event language: 

 

SPEAKER: Jason Bramburger (uOttawa) DATE: Friday, February 10, 2017 TIME: 4:00 pm ROOM: B005 ABSTRACT: Weakly coupled oscillators are used throughout the physical sciences, particularly in mathematical neuroscience to describe the interaction of neurons in the brain. Systems of weakly coupled oscillators have a well-known decomposition to a canonical phase model which forms the basis of our investigation in this talk. Particularly, our interest lies in examining the stability of phase-locked solutions to this phase system: solutions with phases having the same temporal frequency but differ through time-independent phase-lags. The main stability result of this work comes from adapting a series of investigations into random walks on infinite weighted graphs. We provide an interesting link between the seemingly unrelated areas of coupled oscillators and random walks to obtain algebraic decay rates of small perturbations off the phase-locked solutions under some minor technical assumptions. We also provide some interesting and motivating examples that demonstrate the stability of phase-locked solutions, particularly that of a rotating wave solution arising in a well studied paradigm in the theory of coupled oscillators.